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Abstract

Background: Regulatory T cells (Tregs) are lymphocytes
originating in the bone marrow. They mature in the
thymus and help fight inflammation in humans. Tregs are
involved in the maternal acceptance of the allogeneic
fetus.

Objectives: This review focuses on the role of Tregs i.e.
the origins, development and function in pregnancy, as
well as their diagnostic and therapeutic value in
pregnancy pathologies such as miscarriage and
preeclampsia (PE).

Methods: A MeSH and text word PubMed search through
August 2016 was performed using the keywords: T
receptor lymphocytes; subsets of regulatory T cells:
regulatory T cells; controlled trials; pregnancy and
treatment. Additional databases searched included;
Google scholar, database of abstracts of reviews of effects
(DARE), Cochrane Library, NIHR central
portfolio management system, UK database of
uncertainties about the effects of treatments (DUETs), trip
database, health on the NET Northern Ireland (HONNI),
the knowledge network Scotland, the Geneva foundation
for medical education and research (GFMER) and
ClinicalTrials.gov.

Findings and conclusions: The origins, development,
function and the role of Tregs in the pathophysiology of
pregnancy and its complications have not been fully
clarified. A lack of Treg cells or defective production due
to placental disease or an altered immune response are
found in women with sub-fertility, recurrent miscarriage,
PE and preterm birth. However, clinical studies to date
have involved small numbers of women (with a paucity of
randomized controlled trials). Future research focusing on
Tregs and their diagnostic and therapeutic value in the
management of pregnancy complications are urgently
needed.

Keywords: T receptor lymphocytes; Subsets of regulatory
T cells; Regulatory T cells; Controlled trials; Pregnancy;
Treatment

Introduction

The human immune system
The immune system helps to fight against infections as well

as cellular mutations [1]. The immune system has 2
components, the innate and adaptive immune systems [1]. The
innate immune system serves as the body's first line of
defense, responding to microbes in a non-specific manner [1].

It employs NK cells (natural killer cells) that works to
maintain self-tolerance and to eliminate viral infected host
cells. Furthermore, it acts by communicating with small
signaling proteins called cytokines [2-6]. The binding of a
cytokine to a cell surface receptor starts an intra-cellular
reaction chain that alters cell function to support or suppress
inflammation [7-9]. Therefore, cytokines can be broadly
divided into two groups; pro and anti-inflammatory [7-9].

Specific pro-inflammatory cytokines, including interleukin
(IL)-1 and tumor necrosis factor-alpha (TNF-α) are stimulated
by antibody release [10]. The activation of innate cells,
including macrophages, neutrophils, dendritic cells and mast
cells, induces the stimulation of other cytokines that support
an inflammatory response such as IL-1, TNF-α, IL-4, IL-6 and
IL-10 [10].

The adaptive immune system is the body's second line of
defense, providing a complex and specialized response to
infection [11,12]. The adaptive immune system is able to
provide this type of response based on prior pathogenic
exposure and elimination [11,12]. An adaptive immune
response relies on both B lymphocytes/B cells and T
lymphocytes/T cells [13]. B cells originate and mature in the
bone marrow, and are fundamental to pathogen recognition
[13]. Effector B cells circulate in the body until they encounter
an antigen, which is then absorbed by it, and an antibody
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specific for that antigen is secreted [12-15]. Some effector B
cells differentiate into memory B cells, which have a higher
binding affinity for the antigen [3].

T cells mature in the thymus, and prior to maturation,
express both CD4 and CD8 receptors [16]. T cells then
differentiate generally into either T helper cells (TH cells; CD4+
cells), which express the CD4 protein on the cell membrane, or
cytotoxic T cells (Tc cells; CD8+ cells), which express the CD8
protein on its cell membrane [16]. Figure 1 depicts the main
parts of the human immune system in a very basic format.

Figure 1 The different parts of the human immune system

Regulatory T cells (Tregs)
Regulatory T cells (Tregs) are lymphocytes that inhibit the

function of other immune cells [17]. They originate in the bone
marrow, mature in the thymus and are potent suppressors of
inflammation [17]. Cytokines such as IL-2 play important roles
in supporting the development of Tregs in the thymus, as well
as their survival outside the thymus [18]. The maintenance of
Treg cell function also requires the expression of the Foxp3
transcription factor [18]; mutation of the Foxp3 gene leads to
Treg cell deficiency and autoimmunity in both mouse and
humans [18,19].

Tregs are classified as follows
1. Natural Tregs: which are CD4+ CD25+ T cells that develop

in the thymus where they are clonally selected and then
move out of the thymus to perform their role [18,19].

2. Adaptive Tregs: are non-regulatory CD4+ T cells that
attain CD25 expression outside of the thymus, typically, as
a consequence of inflammation and disease processes.
Adaptive Tregs mature in peripheral sites, including
mucosa-associated lymphoid tissue (MALT) from CD4+
Treg precursors, as well as in the uterus in eutherian
mammals [19].

Objective
This review focuses on the role of Tregs i.e. the origins,

development and function in pregnancy, as well as their
possible diagnostic and therapeutic value in pregnancy
pathologies such as miscarriage and PE.

Methods
A MeSH and text word PubMed search through August 2016

was performed using the keywords: T receptor lymphocytes;
regulatory T cells; subsets of regulatory T cells; controlled
trials; pregnancy; and treatment. Additionally, we searched
Google Scholar, database of abstracts of reviews of effects
(DARE), Cochrane Library, NIHR central portfolio management
system, UK database of uncertainties about the effects of
treatments (DUETs), trip database, health on the NET Northern
Ireland (HONNI), the knowledge network Scotland, the Geneva
foundation for medical education and research (GFMER) and
ClinicalTrials.gov. Most of the literature that was retrieved
were observational and experimental studies mostly on animal
models. There were no randomized trials or meta-analysis
[20]. We have summarized our findings below.

Findings

Tregs in pregnancy
Medawar suggested that the fetus should be perceived as

an allograft [21]. Pregnancy is unique as a semi-allogeneic
conception is tolerated rather than rejected by the mother
[22]. Immune disturbances have been linked to reproductive
failure [22]. Thymic function is lower in women who are fertile
and sex steroid hormones cause temporary thymic involution/
atrophy during pregnancy [22]. Thus, the thymus is unlikely to
be the source of the high numbers of peripheral and decidual
Tregs found in pregnancy [20-22].

Non-specific circumstances, such as sub-optimal antigen
presentation, and hormonal factors (elevated estrogen levels
around ovulation and high progesterone concentrations in
pregnancy), together with paternal allo-antigens, result in
expansion of Tregs [20-22].

Tregs are required for the success of any pregnancy by
suppressing immune mediated embryo rejection [23]. The
literature implicating Tregs in the pathophysiology of
pregnancy is expanding, but the immune basis for pregnancy
complications such as preeclampsia remain poorly understood
[4,24-27].

Elevations of specific cytokines have been inconsistently
reported in preeclampsia, and the origins of such elevations
are not known [28]. Cytokines are not invalid markers of
immune function, but their transiency and susceptibility to
environmental influences may significantly affect their
quantification [28].

Tregs are particularly valuable for studying immunological
defects during pregnancy, based on their stability and function
during early pregnancy [29-32]. The physiological function of
Tregs in pregnancy begins before implantation [32]. Treg
numbers were found to be increased in several organs i.e.
lymph nodes, blood, spleen and thymus, prior to implantation
[33]. Expansion of Tregs have been observed in fertile non-
pregnant women in the late follicular phase of the menstrual
cycle [34]. This increase is associated with the rise in estradiol
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levels [33]. It is thought that Tregs serve to prepare a non-
hostile environment for the foreign paternal seminal fluid [35],
and seminal fluid, in turn, can drive Treg expansion [33], thus
preparing the endometrium to receive the embryo [36].

If implantation is successful, the body responds to the
embryo as an allo-antigen, and a second wave of Treg
recruitment and migration to the feto-maternal interface
occurs [35,36]; Tregs accumulate in the decidua and
suppresses an inflammatory rejection of the implanted
embryo [9,37]. It is hypothesized that Treg migration is
assisted by various proteins and receptors [38].

Human chorionic gonadotropin (hCG) produced by human
trophoblast cells have been shown to facilitate migration of
human Tregs along a hormonal gradient [33,39]. There is
unanimous agreement that Treg migration occurs shortly after
implantation [39-41]. The origin of these migrating Tregs is
unclear; some reports suggest that Tregs travel directly from
the thymus to the feto-maternal interface, while others
indicate that this Treg migration is facilitated by the depletion
of peripheral Tregs [40,42].

After implantation, the activity of Tregs is even less well
studied [40,42]. Both human and murine models provide a
consensus that decidual Tregs consistently expand in numbers
throughout pregnancy [19,43,44]. Equally, studies have
reported that peripheral Tregs expand in the first trimester,
and either remain stable or continue to increase during the
second and third trimesters [39,42]. Other studies have shown
that peripheral Tregs are reduced in the second trimester [45],
as well as in the third trimester, relative to the postpartum
period [46], supporting the idea that upon implantation,
circulating Tregs migrate to the feto-maternal interface during
pregnancy [46].

Furthermore, the persistence of Tregs in the circulation
suggests a degree of Treg memory to the paternal antigens
[46], this could be a reason why PE and preterm birth are less
frequent in the subsequent pregnancies [47].

A Foxp3 enhancer (in placental mammals), conserved non
coding sequence 1 (CNS1), is pivotal to the generation of
peripheral Tregs, but not Tregs of thymic origin [48]; this
supports the accumulation of Tregs in the decidua, and a
deficiency in CNS1 is thus postulated to lead to an increase in
spontaneous miscarriages [48]. Foxp3 is a master gene for
differentiation of Tregs [48]. Estrogen augments Foxp3
expression both in vitro and in vivo. Reduced endometrial
Foxp3 mRNA may impair differentiation of uterine Tregs,
resulting in implantation failure [48].

Th17 cells, which secrete IL-17 and an array of pro-
inflammatory cytokines, play important roles in the host
defense against infection, autoimmune and chronic
inflammatory diseases [42,49]. In pregnancy, the immune
system has to protect the mother against potential infections
(Th17 cells), and concurrently, modulate the maternal immune
response to the semi-allogeneic fetus [50]. The balance
between Th17 cells and Tregs has been implicated in the
pathophysiology of pregnancy complications such as
miscarriage and PE [50-52].

Tregs and sub-fertility
There are a limited number of publications on sub-fertility

and Tregs. Sub-fertility has been associated with decreased
numbers of the Treg transcription factor, Foxp3, in endometrial
tissues [41,53], as well as an increase in Th1 cytokines [54].
These studies suggest that a deficiency in Treg mediated
immune tolerance may have a detrimental effect on fertility
(Figure 2) [55].

Figure 2 The imbalance between Tregs and Th1 cytokines as
a possible cause for subfertility

Tregs and recurrent miscarriage
Recurrent miscarriage, defined as three or more

spontaneous pregnancy losses before 20 weeks of gestation,
occurs in 1% to 2% of reproductive couples, 60% of which are
unexplained [56,57]. The prevalence of miscarriage following
three or more miscarriages is 0.3% [56,57]. In addition to high
number of NK cells, an increased population of CD4+ Th1 cells
is also thought to be harmful in early pregnancy [51]. It has
been suggested maternal immune rejection of the fetus occurs
in unexplained recurrent miscarriage [27]. In relation to this,
high Th17, high Th1, high NK and low Treg counts are
associated with an increase in the incidence of unexplained
recurrent miscarriage [51,58].

There are more studies on Tregs and recurrent miscarriage
[51,58]. Similar to sub-fertility, the numbers of Tregs are low in
recurrent miscarriage, specifically, it has been reported that
decidual Treg levels are decreased in women prone to
unexplained recurrent miscarriage [59], and low circulating
Treg numbers can predict miscarriage [60].

Tregs and preeclampsia
Preeclampsia (PE) is a multisystem hypertensive pregnancy

disorder affecting 2% to 8% of all pregnancies, and an
important cause of maternal and neonatal morbidity and
mortality [61,62]. The underlying cause of PE is not yet fully
understood, however, impaired trophoblast invasion in early
pregnancy could lead to PE and fetal growth restriction
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[61,63]. Figure 3 explains the correlation between Tregs and
PE.

Figure 3 The important role of Tregs in PE

Derangements in the maternal tolerance to the fetus
possibly as a result of perturbations in the Treg dynamics may
play a role in the pathogenesis of PE and fetal growth
restriction [61,63]. Some studies have described alterations in
the adaptability of the immunological system and possibly it’s
inappropriate activation can lead to a pro-inflammatory state
and PE [61-65]. The pro-inflammatory state in PE could be
explained by an increase in maternal Tc cells [64,65], and an
increase in dendritic cell maturation [61].

With respect to Tregs, a research report has demonstrated
that not only the numbers of Tregs are decreased but the
function of Tregs are also impaired in preeclampsia [66]. Other
researchers have shown, albeit in small numbers, lower
peripheral and decidual Treg sub-types in pregnancies
complicated with preeclampsia [67-72]. In addition,
derangement in the differentiation of recent thymic emigrant
(RTE) Tregs have been observed in women with PE [73,74].

How does a decrease in Treg numbers and activities cause
PE? A well designed in vitro study showed that the treatment
of decidual dendritic cells with trophoblast supernatant
stimulated Transforming Growth Factor-β and consequent Treg
proliferation, resulting in IL-10 production [75]. Further, this
study found that Tregs significantly increased IL-10 mediated
trophoblast invasion cells, mediated through IL-10 [75].
Decreased decidual Tregs can also lead to aberrant Th1
responses, of which TNF-α is a product [75]. TNF-α promotes
the adhesion of lipoproteins to vascular walls, resulting in
arterial thickening and increased blood pressure [76].

Finally, the balance between Tregs, Th2, Th17 and Th1 cells
has been associated with PE [75-77]; a recent report
demonstrated that whereas Th17 and Th1 cell numbers were
unchanged, Treg and Th2 cell numbers were lower in the
umbilical cord blood of women with PE [77].

Tregs and preterm birth
Preterm birth is defined as birth before 37 weeks of

gestation, affecting approximately 11% of all live births, and
associated with serious neonatal morbidity and mortality
[78,79]. Immune cells contribute to a cytokine-rich milieu in
the presence of infection and inflammation [78,79]. Pro-
inflammatory cytokines such as TNF-α and IL-1β stimulate the
production of prostaglandins, which triggers a cascade of
events leading to uterine contractions and fetal membrane
rupture; if activated early, preterm labor can ensue [80].

It has been suggested that T cell recruitment to the feto-
maternal interface is required for term pregnancy, and that the
dysregulation of this process may lead to preterm labor and
premature rupture of fetal membranes [81]. In relation to this,
low circulating Tregs and short uterine cervical length is
significantly associated with preterm labor [82]. The
percentage of Tregs decreases in the decidua of pregnant
women with spontaneous vaginal delivery compared to those
with elective caesarean section without contractions,
suggesting the possible role of Tregs not only in maintaining
the pregnancy but also in the regulation of labor [83].
Furthermore, IL-6 concentrations are often elevated in
preterm labor [84], which suggests that the Th17/Treg balance
is altered in preterm labor [84]. Progesterone treatment can
lower the risk of preterm labor [85]; notably, Tregs express
progesterone receptors, indicating that the beneficial effects
of progesterone could be through stimulating Treg
proliferation [86].

Chronic chorioamnionitis exhibits a reaction
immunologically similar to transplant rejection [20]. Moreover,
Treg mediated suppression of the immune response can cause
chronic low grade infection to persist in preterm pregnancies
[87]. From a neonatal perspective, lower Treg activity may
contribute to the inflammation in newborns associated with
pregnancies complicated by chorioamnionitis [88]. On the
other hand, the peripheral Treg pool of preterm infants may be
altered by lower gestational age, prenatal exposure to
inflammation and chorioamnionitis [89].

Treg therapy in pregnancy complications
Tregs can be isolated and expanded in ex vivo cultures,

hence, a therapeutic product can be manufactured at relevant
doses [33]. Intravenous administration and/or intrauterine
injection of Tregs to raise Treg numbers at the feto-maternal
interface appears to be an attractive option in the treatment
of pregnancy complications such as miscarriage and
preeclampsia. However, administration of Tregs to humans
have been associated with serious immunological side effects
[33]. Nevertheless, the therapeutic applications of Tregs to
regulate immune responses remain an active area of research
[90].

Conclusion
Reproductive complications such as sub-fertility, recurrent

miscarriage, PE and preterm birth, pose a serious health, social
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and economic burden on women and their families [90,91].
From our discussion above it has been seen that Tregs play an
important part in normal pregnancy and various reproductive
complications.

Understanding the mechanisms by which Treg cells exert
their influence, is an area of intense research with broad
implications for the development of therapeutic strategies for
many disease processes including pregnancy related
pathologies [90,91]. Tregs are involved in the maternal
tolerance to the fetus at the feto-maternal interface [90,91].

The origins, development, function and the role of Tregs in
the pathophysiology of pregnancy and its complications,
however, have not been completely clarified [90,91]. A recent
development is the identification of memory T cells that could
function as Tregs, the clinical significance of which has yet to
be fully defined [91].

Furthermore, we now understand that Tregs interact with
NK cells to maintain immune balance in pregnancy [90,91]. Cell
therapies with Tregs in early pregnancy may perhaps help to
‘cure’ imbalances in pregnancy complications [90,91].

A lack of Treg cells or defective production due to placental
disease or an altered immune response are found in women
with sub-fertility, recurrent miscarriage, PE and preterm birth
[70-91]. However, clinical studies to date have involved small
numbers of women (with a paucity of randomized controlled
trials). Future research focusing on Tregs and their diagnostic
and therapeutic value in the management of pregnancy
complications are urgently needed.

Many authors propose that transferring antigen specific
Tregs before implantation have worked in murine models and
could work in humans as well [92-94]. Some innovative
experiments have looked at vaginal application of TGB (tumor
growth factor) that increases peripheral Tregs and halt
miscarriages. A small ovine study by Willems et al. showed
that systemic IL-2 treatment in utero, increased Tregs and
improved lung gas volume in ovine fetuses with
chorioamnionitis. However, these applications are still in the
experimental stages. Furthermore, it is well known that animal
testing is not always well replicated in humans and may be a
waste of resources. Perhaps stem cell research may the
answer.

We thus concluded that it is still not safe to use Tregs for
immune modulation in pregnancy. As the measurements of
circulating Tregs become more accurate, stable and
convenient, it may be a useful bio-marker for pregnancy
complications [29-31]. Future research could be directed at
quantification of specific Tregs in various different stages of
complicated pregnancies. A cost benefit analysis could further
enhance the usefulness of these trials.

At this present point, we are still a long way away, before we
can safely use Tregs as a low cost diagnostic tool for
dysfunctional placental disease.
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